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Abstract. We analyze the CCFR collaboration iron target data on the xF3 structure function making
particular emphasis on the extraction of the higher twist contributions from the data. Corrections for
nuclear effects are applied in order to extract data on the structure function of the isoscalar nucleon. Our
analysis confirms the observation made earlier, that the higher twist terms depend strongly on the level to
which QCD perturbation theory analysis is applied. We discuss the impact of nuclear effects on the higher
twist term as well as on the QCD scale parameter ΛMS extracted from the fit to data.
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1 Introduction

In the present paper we report the results of our analysis
of the CCFR collaboration data [1] on the structure func-
tion xF3. The particular emphasis of the analysis is to con-
strain the higher twist (HT) contributions to the structure
function from the data. The HT effects in the xF3 struc-
ture function are of particular interest because of certain
theoretical predictions made in the framework of infrared
renormalon technique [2–5]. An attempt to constrain the
HT terms from the CCFR/NuTeV collaboration data was
done in [6,7], where the F3 structure function was written
as the sum of two terms,

xF3(x,Q2) = xFLT
3 (x,Q2) +

h(x)
Q2

, (1)

with FLT
3 the leading twist contribution and h/Q2 the

HT term. An important observation which follows from
the analysis [6–8] is that the magnitude of the HT term
depends on the level to which the perturbation theory
analysis of FLT

3 is applied. If FLT
3 is evaluated in a leading

order (LO) renormalization group formalism a large h(x)
appears from the fit. When a next-to-leading order (NLO)
formalism is used for FLT

3 a somewhat smaller but still
substantial contribution from the HT term is needed. If
FLT

3 is evaluated to next-to-next-to-leading order (NNLO)
very little room is left for the HT term.

We note that QCD analysis of data implies that data
are given for isolated proton and neutron. In practice,
due to the reason of statistics, neutrino data are taken
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mainly on nuclear targets rather than on isolated proton
and neutron. For example, the CCFR/NuTeV collabora-
tion uses the iron target, the IHEP-JINR Neutrino De-
tector uses the aluminum target [9], and the forthcoming
data from CHORUS collaboration is obtained on the lead
target [10]). It is known from muon and electron DIS ex-
periments, that nuclear effects are quite essential in a wide
kinematical region of x and Q2 (the EMC effect at large x,
nuclear shadowing at small x, for a review see, e.g., [11]).
Therefore, the separation of nuclear effects from data in-
troduces certain corrections to QCD analysis of data.

All these motivate us to make a new analysis of the
CCFR neutrino data taking into account corrections due
to nuclear effects. Our analysis involves two steps. In sec-
tion 2 we discuss our approach to calculate nuclear struc-
ture functions and to correct data for nuclear effects, and
then in section 3 we report the results of QCD analysis of
corrected data. In sect. 4 we summarize.

2 Nuclear structure functions

In order to apply corrections for nuclear effects in our
analysis we first calculate the “EMC ratio” for the iron
target, R3(x,Q2) = FA

3 (x,Q2)/AFN
3 (x,Q2), with FA

3 the
structure function of a heavy nucleus of A nucleons and
FN

3 the structure function of an isolated isoscalar nu-
cleon1. Then we extract the structure function of an iso-
lated isoscalar nucleon from the CCFR data, FN

3 (x,Q2) =
FCCFR

3 (x,Q2)/R3(x,Q2).
1 The isoscalar nucleon structure function is defined as F N

3 =
1
2
(F p

3 + F n
3 ).
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Bulk of neutrino data with Q2 > 1 GeV2 is located
in the region of x > 0.1. For this kinematical regime it
is usually assumed that nuclear DIS of leptons from nu-
clear targets can be viewed as incoherent scattering from
bound nucleons. Major nuclear effects found in this region
are due to nuclear binding [12] and Fermi motion [13] and
off-shell modification of bound nucleon structure functions
[14]. For the simplest nuclear system, the deuteron, the re-
lation between the deuteron and the nucleon F3 structure
function reads as follows [15]:

xFD
3 (x,Q2) = 2

∫
d3p

(2π)3
|ΨD(p)|2

×
(

1 +
pz

γM

)
x′FN

3 (x′, Q2; p2), (2)

where ΨD(p) is the deuteron wave function which de-
scribes the probability to find the bound proton (or neu-
tron) with momentum p, x′ = Q2/2p·q is the Bjorken
variable of the bound nucleon with the four-momentum
p which is given by the difference of the target four-
momentum and the four-momentum of the spectator nu-
cleon. Equation (2) is written for the target rest frame
and the axis z is chosen along the direction of momen-
tum transfer, q = (q0, 0⊥,−|q|). In this reference frame
p = (MD −

√
p2 +M2,p) with MD and M the deuteron

and the nucleon mass, respectively, and γ = |q|/q0 =
(1 + 4x2M2/Q2)1/2 is the “velocity” of the virtual boson.
Note that the bound proton and neutron are off-mass-
shell and their structure functions depend on the nucleon
off-shellness p2 as an additional variable.

For the scattering off a heavy nucleus of A nucleons,
there appears a rich spectrum of spectator nuclear states
of A−1 nucleons, over which we have to sum. The nuclear
structure function is then given by equation similar to (2)
where we have to substitute the deuteron wave function
by nuclear spectral function P(ε,p) and introduce an ad-
ditional integration over the energy spectrum of spectator
states [15],

xFA
3 (x,Q2) =

∑
τ=p,n

∫
dεd3p

(2π)4
Pτ (ε,p)

×
(

1 +
pz

γM

)
x′F τ

3 (x′, Q2; p2), (3)

where the sum is over protons (τ = p) and neutrons
(τ = n). The nucleon four-momentum p = (M + ε,p).
The proton and neutron spectral functions, Pp and Pn,
are normalized to the number of bound protons (Z) and
neutrons (N), respectively.

Heavy nuclei, such as iron 56Fe26, generally have got
unequal numbers of protons and neutrons with an excess
of the latter over the former. The neutron excess is gen-
erally small, (N−Z)/A � 1. Therefore, it is a good ap-
proximation to assume that the neutron and the proton
spectral functions calculated per one particle are equal,
Pp/Z = Pn/N . Then we find from (3),

xFA
3 =

〈(
1+

pz

γM

)(
x′FN

3 +
N−Z

2A
(x′Fn

3 −x′F p
3 )

)〉
, (4)

where the averaging is done with respect to the isoscalar
spectral function, Pp+Pn. The last term in (4) gives a cor-
rection due to excess of neutrons in a nucleus. We notice
that the sign of this correction is different for neutrino and
anti-neutrino scattering. Indeed, we have F ν

3 = 2(d − ū)
with d and u the parton distributions of corresponding
quarks in the target (we neglect for simplicity the con-
tributions due to s- and c-quarks). Since the neutron has
more d-quarks than the proton has (in the valence quark
region), the neutrino-neutron structure function is larger
than the proton one, F νn

3 > F νp
3 . Therefore F νA

3 receives
a positive correction due to excess of neutrons. Repeating
this argument for anti-neutrino scattering, we find that the
corresponding correction is equal in magnitude but oppo-
site in sign (i.e. negative). Therefore the N−Z correction
vanishes for the structure function averaged over neutrino
and antineutrino. Similar discussion can also be applied to
the F2 structure function. One can also see that the N−Z
correction is negative for the charged leptons scattering,
i.e. for the FµA

2 structure function.
As it is obvious from (3), calculation of nuclear struc-

ture functions requires the knowledge of nuclear spectral
function. In the next section we discuss the nuclear spec-
tral function used in the present calculation in more detail.

2.1 Nuclear spectral function

Nuclear spectral function P determines the probability to
find the nucleon with the momentum p and (non relativis-
tic) energy ε in the ground state of the nucleus and can
be written as follows:

P(ε,p) = 2π
∑
n,σ

|〈(A− 1)n,−p |aσ(p)|A〉|2

× δ
(
ε+ EA−1

n +
p2

2MA−1
− EA

0

)
. (5)

Here the sum is over the quantum numbers of the whole
set of the residual states of A−1 nucleons which includes
the bound states as well as the sates in continuum, aσ(p) is
the annihilation operator of the nucleon with momentum
p and polarization σ, and EA−1

n and EA
0 are, respectively,

the energy of the residual nucleus and the ground-state en-
ergy of the target nucleus. The residual system balances
momentum of the removed nucleon and acquires the re-
coil energy p2/2MA−1 though its effect is small for heavy
nuclei. The nuclear momentum distribution is

n(p) =
∫

dε
2π

P(ε,p). (6)

The integration of the spectral function over energy and
momentum gives the number of bound nucleons A.

The spectral function (5) determines the rate of nu-
cleon removal reactions such as A(e, e′p)X that makes it
possible to extract the spectral function from experimen-
tal data2. The picture of the spectrum of residual states as

2 Though one should notice, that the direct connection be-
tween the cross-sections and the spectral function holds only
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revealed from these experiments with heavy nuclei can be
summarized as follows. At low energies and momentum 3

the energy spectrum of residual states follows to that pre-
dicted by the mean-field model of the nucleus, i.e. it con-
sists of the set of sharp peaks whose positions can be iden-
tified with the energies needed to separate bound nucle-
ons from the occupied single particle levels in the nuclear
mean field. The deviations from the mean-field picture be-
come significant at high momentum p and high nucleon
removal energy ε. The widths of the resonances increase
as ε increases as well as the positions of the peaks move
from that predicted by the energy independent mean-field
model. At high energy the spectral function is dominated
by contributions from the states with one and more nu-
cleons in the continuum. These contributions are due to
NN-correlations in the nuclear ground state and cannot
be accounted for within the mean-field model.

2.1.1 Phenomenological model of spectral function

The calculation of the nuclear spectral function for com-
plex nuclei requires to solve many-body problem. The lat-
ter is known to be a difficult task and presently can be
done only within certain approximations. In our discussion
we follow [16] and consider a phenomenological model for
the spectral function which incorporates both the single-
particle nature of the spectrum at low energy as well as
high-energy and high-momentum components due to NN-
correlations in the ground state4. To this end, we separate
the full spectral function (5) into two parts,

P(ε,p) = P0(ε,p) + P1(ε,p), (7)

which correspond to contributions from low-excitation en-
ergy intermediate states (P0) and high-excitation energy
states (P1). The low-energy part can be approximated by
the sum of the energy δ-functions which pick the positions
of the occupied single-particle levels weighted with the cor-
responding wave functions squared. In practice we use an
approximate expression instead, where the sum over oc-
cupied levels is substituted by its average value,

P0(ε,p) = 2π n0(p)δ
(
ε+ E(1) +

p2

2MA−1

)
, (8)

with E(1) = EA−1−EA
0 the nucleon separation energy av-

eraged over residual configurations of A−1 nucleons with
low excitation energies, i.e. mean-field configurations, and
n0(p) the corresponding part of the nucleon momentum
distribution.

in the impulse approximation, and is destroyed by other effects
such as final-state interactions and meson exchange currents.

3 The momenta should be compared with Fermi momentum
pF which is for heavy nuclei pF ≈ 300MeV/c. The correspond-
ing Fermi energy is of order εF ≈ 40 MeV.

4 We note that our definition of the spectral function is dif-
ferent from the one used in [16], where the recoil energy was
not included into the energy δ-function in (5).

The high-energy part P1 is determined by excited
states in (5) with one or more nucleons in the continuum.
It was observed within many-body calculations [17,16] for
a wide range of nuclei that nuclear momentum distribu-
tions at high momenta (|p| > pF with pF the Fermi mo-
mentum) run parallel to the deuteron distribution nD(p),

n1(p) ≈ CAnD(p), (9)

where the normalization constant CA incorporates the
many-body aspects of the problem. It was found [16] that
the constants CA increase from 2 for 3He to 4.5 for 56Fe.
Going to a larger mass number does not bring any longer
to a high momentum component, CA = 5 for nuclear mat-
ter5.

This observation finds a simple interpretation if one as-
sumes that the high momentum component is generated
by ground-state configurations with a correlated NN-pair
with a small distance between the nucleons. One can ex-
pect therefore that the relative motion in the NN-pair is
determined by the properties of the NN-interaction in the
vacuum rather than by long-range nuclear interactions,
and the distribution in the relative momentum will be
similar to momentum distribution in the deuteron.

In terms of the spectral function P1 this corresponds to
the assumption about the dominance of the contribution
from the states with one nucleon in the continuum and
the remaining A−2 nucleons being in a state with low
momentum and low excitation energy,

|A−1,−p〉 ≈ a†(p1)|(A−2)∗,p2〉δ(p1 + p2 + p). (10)

The coprresponding matrix element in (5) is then deter-
mined by the wave function of the NN-pair embeded into
nuclear environment,

〈(A−2)∗,p2 |a(p1)a(p)|A〉 =

ψrel(k)ψA−2
CM (pCM)δ(p1 + p2 + p). (11)

We assume here factorization into the wave functions de-
scribing the relative motion in the NN pair, ψrel(k), with
relative momentum k = (p−p1)/2 and the center-of-mass
(CM) motion of the pair in the field of A−2 nucleons,
ψA−2

CM (pCM) with pCM = p1 + p. In general ψCM depends
on the quantum numbers of the state of A−2 nucleons,
however the corresponding dependence of the ψrel is weak.

We substitute (11) into (5) and sum over the spec-
trum of A−2 nucleons states and obtain an approximate
expression for P1,

P1(ε,p) = (2π)
∫

d3p1d3pCMnrel(k)nCM(pCM)

× δ(p1+p−pCM) δ
(
ε+

p2
1

2M
+

p2
CM

2MA−2
+E(2)

)
. (12)

Here nrel and nCM are the relative and the CM momentum
distributions, respectively, and E(2) = EA−2 − EA

0 is the
5 One should note however, that relation (9) does not hold

at low momentum where n1(p) contributes only a little to the
full momentum distribution.
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energy needed to separate two-nucleons from the ground
state averaged over configurations of A−2 nucleons with
low excitation energy. Note that the minimum two nucleon
separation energy E(2) = EA−2

0 −EA
0 is of order of 20 MeV

for medium-range nuclei like 56Fe.
The factorization of the matrix element (11) into the

relative and the CM motion wave functions is justified
if relative momentum in the NN-pair is large relative to
the CM momentum of the pair. This can be written as
|p| 
 |pCM|. This condition allows us to approximate (12)
by taking the relative momentum distribution out of the
integral over the CM momentum at the point k = p. Then
we have,

P1(ε,p) = (2π)nrel(p)

×
〈
δ

(
ε+

(p + p2)2

2M
+

p2
2

2MA−2
+ E(2)

)〉
CM

, (13)

where the averaging is done with respect to the CM mo-
tion of the pair. From the latter equation it is clear that
the high-momentum part of nuclear momentum distribu-
tion is given by the relative momentum distribution in the
correlated NN-pair embedded in the nuclear environment,
n1(p) = nrel(p).

The characteristic momentum for the CM motion of
the NN-pair is similar to the one in the mean-field model.
In fact the averaged CM momentum squared of the pair
can be estimated from the balance of the overall nucleus
momentum [16], 〈(∑ pi)2〉 = 0, where the sum is taken
over all bound nucleons and the averaging is performed
with respect to the intrinsic wave function of the nu-
cleus. This gives 〈p2

CM〉 = 2(A−2)〈p2〉/(A−1), with 〈p2〉
the mean value of the squared single-nucleon momentum.
Since, by our assumption, the CM distribution does not
include the high-momentum component, we should also
exclude the contribution of the high-momentum part in
estimating 〈p2〉. We follow [16] and parameterize the CM
momentum distribution of the correlated NN pair in the
field of other A−2 nucleons by a Gaussian distribution,

nCM(pCM) = (α/π)3/2 exp(−αp2
CM), (14)

with the parameter α determined from the averaged CM
momentum of the pair, α = 3/(2〈p2

CM〉).
Using (14) we find that the integration over the CM

momentum in (13) can be done analytically and finally
the result reads,

P1(ε,p)=n1(p)
2M
|p|

√
απ

(
exp(−αp2min)−exp(−αp2max)

)
,

(15)

where pmin and pmin are respectively the minimum and
the maximum CM momenta allowed by the energy-
momentum conservation in (12) for the given ε and p,

p2max =
(
A−2
A−1

|p|+pT

)2

, p2min =
(
A−2
A−1

|p|−pT

)2

, (16)

with pT =
(
A−2
A−1

(
−2M(ε+ E(2)) − p2

A−1

))1/2

.
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Fig. 1. The iron/deuterium ratios (EMC ratios) calculated for
the structure functions F2 (solid curve) and F3 (dashed curve)
within the model described in the text. The data points are
from BCDMS [18] (open boxes) and SLAC [19] (filled boxes)
experiments. The curves were calculated at fixedQ2 = 16GeV2

using CTEQ4 parameterizations for the nucleon parton distri-
butions.

We notice that pT has the interpretation of the maximal
allowed CM momentum in the correlated NN-pair in the
direction transverse to p for the fixed ε and |p|. Note that
the separation energy ε is negative, as follows from its
definition in (5). The condition p2T = 0 determines the
threshold value of ε for the fixed |p|.

In numerical evaluations we use the parameterizations
for n0(p) and n1(p) of [16], which fit nicely the results
of many-body calculation of nuclear momentum distribu-
tion. It follows from this calculation that low momentum
part incorporates about 80% of the total normalization of
the spectral function while the other 20% are taken by
the high-momentum part. The mean kinetic energy ob-
tained from integration of the full momentum distribu-
tion n0 + n1 for the iron nucleus is 〈p2〉/2M = 31 MeV
(the share of the high-momentum component n1 is about
20 MeV). The two parameters, E(1) and E(2), determine
the characteristic range of nucleon separation energy. We
set E(2) = EA−2

0 − EA
0 = 20 MeV, and therefore neglect

possible contributions due to excited states of A−2 nucle-
ons in (12)6. In order to fix the parameter E(1) we em-
ploy the Koltun sum rule [20], which gives the relation
between mean separation energy 〈ε〉, mean kinetic energy
〈p2〉/2M , and the ground-state energy per nucleon EA

0 /A.
For the mean kinetic energy of 31 MeV the sum rule gives
〈ε〉 ≈ −50 MeV. By integrating our model spectral func-
tion we find the value E(1) = 27 MeV which satisfies the
Koltun sum rule.

6 The effect of A−2 excited states would lead to an over-
all increase of nucleon separation energy. We believe, however,
that concrete estimates of this effect would require that we go
beyond the model discussed in the present paper.
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2.2 The EMC ratios R2 and R3

In fig.1 we compare the iron/deuterium ratios for the
charged lepton structure function Fµ

2 and the neutrino
and antineutrino averaged structure function F3, calcu-
lated with the model nuclear spectral function discussed
above. Also shown are the BCDMS [18] and the SLAC [19]
data on the iron/deuterium F2 structure function ratios.
In numerical calculations we use the CTEQ4 parameter-
izations for the nucleon parton distributions [21]. We see
that the behavior of the ratio R3 is very similar to that of
the ratio R2 (for large x and large Q2 this does not come
as a big surprise, since both F2 and xF3 are determined
by valence quarks in this region). A small difference be-
tween the R2 and R3 curves is due to the neutron excess
correction. As was discussed in sect. 1, the Fµ

2 structure
function receives a negative N−Z correction, while simi-
lar correction cancels out in the neutrino and antineutrino
averaged structure functions. It is well known, that the de-
pletion of nuclear structure functions at x < 0.7 is due to
nuclear binding effect [12], while the rise of the ratios at
large x > 0.7 is due to nuclear momentum distribution
effect (Fermi motion).

We recall also that bound nucleons are off-mass-shell.
Off-shell effects in the structure functions appear as the
dependence on the target invariant mass p2. Target mass
corrections can be of two different kinds. First of all, we
have to take into account “kinematical” target mass de-
pendence due to finite p2/Q2 ratio. To this end we use
the Nachtmann scaling variable [22] ξ = 2x′/(1 + (1 +
4x′2p2/Q2))1/2 instead of the Bjorken variable x′. Other
(“dynamical”) sources of p2-dependence of structure func-
tions are also possible. In this respect we refer to a model
where p2-dependence of structure functions appears in the
leading order [14,15]. We note also here, that we take into
account off-shell effects in the bound nucleon structure
function in a way that it does not affect the number of
valence quarks in the nucleon [15]. The off-shell effect acts
coherently with nuclear binding effect and leads to an ad-
ditional suppression of nuclear structure functions at in-
termediate range of x.

The ratio R2 follows quite closely to data on the EMC
effect in the iron nucleus (see fig. 1). This gives us the
confidence in our method to calculate the EMC effect in
the F3 structure function.

3 QCD analysis and fit

Our QCD fit proceeds as follows. The nucleon structure
function FN

3 (x,Q2) is written as a sum of the leading twist
and the high twist terms, (1). We parametrize xFLT

3 at
some scale Q2 = Q2

0 in terms of a simple function,

xFLT
3 (x,Q2

0) = a1xa2(1 − x)a3(1 + a4x). (17)

Then we apply the renormalization group equation in or-
der to calculate evolution of xFLT

3 with Q2. We solve the
renormalization group equation in the leading (LO), next-
to-leading (NLO) and next-to-next-to-leadig (NNLO) log-
arithm approximations of QCD. In doing so, we expand

the leading twist structure function xFLT
3 in terms of its

Mellin moments within the framework of the Jacobi poli-
nomial method and then apply the evolution equations
to the moments (for more detail on the method used see
[23]).

It should be noticed that in general the higher twist
terms can be of two kinds: those which have the kinemat-
ical nature, e.g. the terms due to finite target mass, and
those which arise due to higher twist operators and reflect
the quark-gluon interaction effects in the target (“pure”
higher twists). In order to ensure that the higher twist
term in (1) describes effects due to quark-gluon interac-
tion in the target we explicitly take into account the kine-
matical corrections due to finite target mass. To this end
we substitute the Mellin moments by the Nachtmann mo-
ments [22] in the the Jacobi polinomial expansion of the
leading twist structure function xFLT

3 .

The CCFR data points are given in terms of discrete
x-bins structure which range from x = 0.0075 to x = 0.75.
We fit 116 data points with Q2 in the range between
1.3 GeV2 and 200 GeV2. The fit parameters are the pa-
rameters a2, a3, and a4 of (17) at the scale Q2

0, the values
of the function h(xi) at the center of each xi-bin, as well
as the QCD scale parameter ΛMS . We fix the parameter
a1 by normalizing (17) to the Gross-Llewellyn-Smith sum
rule, which was calculated in QCD to the second order in
αS [24], SGLS = 3(1 − αS/π − 3.25(αS/π)2).

Our results are shown in fig. 2 for the LO, NLO and
NNLO approximations to the evolution equation. Also
shown are the results with and without applying correc-
tions for nuclear effects. We found that the fitting pa-
rameters are stable for Q2

0 > 15 GeV2 and have chosen
Q2

0 = 20 GeV2 for the results presented in fig. 2. The
present fit includes more experimental points than that
of [6,7]. In particular, the inclusion of low-Q2 data points
into the fit allows us to reduce the error bars in h(x) as
compared to those presented in [6,7]. Though we should
notice some increasing theoretical uncertainties associated
with low Q2 data included into our analysis. We found
that, in general, our present fit agrees with [6,7], though
introduces certain corrections especially at large x.

A special care was taken to insure that our method to
separate target mass correction is self-consistent. In par-
ticular we have done a special fit with h(xi) fixed at val-
ues presented in fig. 2, but let the mass parameter in the
Nachtmann moments to be free. We found that the mini-
mum of χ2 corresponds to the value of the mass parameter
about 0.9 GeV with an error about 0.2 GeV. This value
only weakly depends on the order of perturbative analysis
and is close to the proton mass, that gives us confidence
in the method used.

As one can clearly see from fig. 2 the magnitude of
the higher twist effects depends on the level to which the
perturbation theory analysis of FLT

3 is done. The more
perturbative corrections are included into the evolution
equation, the less room is left for the function h(x). The
shape of h(x) in NLO is in a qualitative agreement with
the prediction of infrared renormalon approach [3]. In par-
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Fig. 2. The function h(x), which describes the strength of the
higher twist term in the xF3 structure function as extracted
from the fit to the CCFR neutrino data (see text). The labels
on the figure indicate the level to which the perturbation theory
analysis of xFLT

3 is done.

ticular, we found that the function h(x) is negative in the
region 0.1 < x < 0.6.

The separation of nuclear effects from data leads to
a further suppression of the higher twist term h(x) at all
levels of perturbation theory analysis of FLT

3 . The effect of
nuclear corrections on h(x) is most pronounced at large x,
where we observe a systematic reduction of h(x) as com-
pared with no-nuclear-effects analysis. Nuclear corrections
result in the decrease of the values of the function h(x) at
x > 0.6. As one can see from fig. 2, the central points of
h(x) at x = 0.65 and x = 0.75 bins become negative in
contrast to the infrared renormalon prediction for large x
[3]. An attempt to take into account nuclear effects in the
QCD fit was previously done in [25,7]. We comment in
this respect that authors of [25] used the deuteron model
for nuclear effects, which is not a realistic one for the iron
target. In particular, we found that h(x) is negative for
large x, while it was positive in [25]. Authors of [7] at-
tempted to introduce nuclear corrections to QCD fit in
terms of the moments of structure functions. However, it
was incorrectly assumed in [7], that the nuclear structure
function FA

3 → 0 as x→ 1, that, to our mind, caused the
χ2 increase in their QCD fit.

We found that the scale parameter ΛMS decreases for
about 40 MeV after nuclear effects are taken into account.
This will lead to a shift of αS(MZ) for about 2 · 10−3.

Within the NNLO fit we get ΛMS = (394 ± 55) MeV for
four quark flavors.

4 Summary and conclusions

In the present paper we report the results of our QCD
analysis of CCFR data on F3 structure function. The main
emphasis was put on the extraction of higher twist con-
tribution from the data. We took special care to separate
nucler effects from the data, and compare the results of
both analyses with and without corrections for nuclear
effects.

We found that nuclear effects cause about 10% de-
crease in the ΛMS value.

Our analysis confirms the observation made ear-
lier, that the magnitude of higher twist terms decreases
strongly when going from LO to NLO, and then to NNLO,
approximations to the evolution equation. We observe an
additional suppression of higher twist terms when correc-
tions due to nuclear effects have been applied.

In conclusion we note that small-x region in F3 struc-
ture function is of particular interest, where a strong nu-
clear shadowing effect is anticipated [26]. We plan to ad-
dress nuclear shadowing effect in application to QCD anal-
ysis of neutrino data.

This work was supported in part by the RFBR project no. 00-
02-17432. We are grateful to A.L. Kataev for useful discussions.
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